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The investigated mechanical system may be considered to be a Set of weakly 

connected nonlinear oscillators Subjected to the action of autonomous forces 

of various kind (e. g. , dissipative forces) and periodic perturbations. Two al- 

gorithms are propcxred for the derivation of approximate general solution of 
their equations of motion in the n~ghborhood of the e~i~b~um state or perio- 

die motion which are valid over considerable time intervals Both algorithms 

are based on the concept of group transformation which affect frequencies. 

In algorithm 1 the one-parameter group of symmetry of equations of motion which 

Shifts the small parameter down to zero is used. This reduces the nonlinear input 
system to a linear system with altered frequencies which is readily integrable. The 
Sought solution is reestablished using Lie’s series. 

Algori~m 1 is applied in cases in which the total neighborhood of the considered 

mode is filled by almost-periodic motions, which seldom occurs in the presence of 

resonances in the system. This algorithm is used here for obtaining nonresonance sol- 
utions of the Duffing the Mathieu equations, of equations of the elastic pendulum, and 

of plane oscillations of a satellite on an elliptic orbit. If in the n~ghborho~ of the 
investigated stationary mode oscillations are accompanied by an exponential build-up 

or damping - a characteristic of resonance motions - Algorithm 2 is used. 

In the latter case the used symmetry group retains the small parameter so that for 

each of its fixed value any tr~forma~on of the group converts the set of solutions in- 
to itself. If the group and the input equations are of the same dimension, the effect 
of the group is transitive, and all remaining solutions in its neighbrohood are derived 

from the trivial solution. 
The possibility of analyzing intricate situations that occur in the presence of reson- 

ances iS due to that the determining Lie equations for the group vector field are linear 
and homogeneous (derivation is carried out in terms of Lie algebra). If these equations 
in partial derivatives are considered only along the leading motion, they reduce to the 
well known equations in variations of the theory of motion stability. 

It iS not possible to determine the characteristic indices of solutions without using 

equations in variations for the first approximation. To the same extent it is apparently 

impo&ble to c&bin expansions and indices of exponents in further approximationswith- 
out resorting to Lie equations which generalize equations in variations. 

Algorithm 2 is used here for deriving asymptotic Solutions of the Van der Pal, 

Mathieu, and Duffing equations. 
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Note that the proposed algo~~~ are based on a combination of ideas that go back 
to Linschtedt and Poincarg [l] and of the group method of asymptotic solution derivat- 
ion. The group aspect of various problems of dynamics was noted in [2,3] and many 
other publications (9. 

The derivation of solutions valid over considerable time intervals was considered 
in numerous publications dealing with the method of perturbations [4,5], The asympt- 
otic methods reduce the problem to a new system of equations which may not always 
be integrated. However, if one succeeds to integrate that system, an approximate de- 
finition of motion throughout the phase space is obtained. 

As opposed to that method, the group-theoretic methods proposed here yield in the 
described situations simple successively integrable systems which provide, however, a 
solution of the local problem only, namely the derivation of a general solution in the 
neig~orh~d of the investigated resonance. 

1. Statement of the problem and description of 
algorithms. The considered here systems are defined by the equations 

a$$’ = - ok!& + e!!k @I 8, 6 8) (1.1) 

$ik’ = akxk + ehk (x, .?t, t, 8)~ k < n 

where the frequencies ok are real numbers, E is a small parameter, and gk and & 
are analytic functions of their arguments that are 2n -periodic with respect to t or 
independent of f . Without loss of generality 

& (0, 0, t, e) = & (0, 0, & E, = o 

We have the problem of deriving the general (total) formal solution in the region 
of stability position in the form of expansion in the small parameter which does not co- 
ntain secular terms. 

It is expedient to write the system of Pqs. (1.1) in complex form. Setting zk = 
xk + @k and fk = gk + ihk,, we obtain 

Z&’ = i@kZk + efk (2, z’, t, 8)~ k < r.3 0.2) 

The conjugate system is not presented since it is not required subsequently: owing 
to the presence of the SnXIll parameter the expressions i@kzk are the principal terms 
of the right-hand sides of equations, which reduces the number of equations by half, 

A 1 g o r i t h m 1. Let us consider the one-parameter group of transformations 
which effect the shift of the small parameter e’ = E -/- Z (z is the canonical para- 
meter of the group) and transforms system (1.2) into itself 

Zk” = iak’zk’ + e’fk (z’, ??, t, d) 

The group does not affect time t but transforms frequencies op. If in these tran- 
sformations we set ‘G = - 8, we obtain 8 = 0 , and system (1.2) reduces to the 

l ) Bogoiavlenskii, A. A., Emel’ianova, I. S. s Markhashov, L. M. , Pavlovskii. Iu. 
N., and Iakovenko, G. N., The group method of investigation of equations of mechan- 
ics of systems with finite number of degrees of freedom. The 3-rd All-Union Chetaev 
Conference on Motion Stability, Analytical Mechanics, and Motion Control. Theses of 
Reports. Irkutsk, 1977. 



256 L. M. Markhashov 

The condition of invariance of Eqs, (1,2) is conveniently formulated in terms Lie 

algebra 

where .!I, is the operator of shift along the trajectory of system (1.2), Z is the in- 
finitesimal operator of the group, and [I?., *] is the commutator, 

The frequency transformation function co, is to be selected so that after substitu- 
tion of ok as functions of !& in the expressions for gk the secular terms vanish in 

the latter. This is most readily obtained by substituting frequencies directly into the 
equations of motion prior to the formulation of the commutation condition (1.3). Spec- 

ifically, we shall consider instead of Eqs. (1.2) the following new equation& 

zk’ = iXkZk + &fk (2, 2, t, E), k < ~2 (1.4) 

Xk = &II, f akl& + ak2E2 $_ . . . (1. 5) 

where $‘& are new parameters (of frequency), a&j are functions of frequencies selec- 
ted so that no secular terms appear in expansions at all integration stages; Cckj may 
also depend on variables zkr 2k, and t, when we stipulate that the o&j remain Eon- 

stant along the solutions of system (1.4) 

&k = 0, D = D‘O IW),-+Xk 
( 1. 6) 

where L> is the operator of shift along the trajectory of system C I.. 4). 

If we now set 
ok = Xk (a, E) 

il. 71 

then by condition (1,6) every solution of system (1.4) With parameters $>I, will repre+ 
ent some solutions of that system with parameters wk , and 621, Will bedefined as 

implicit functions of Ok . After frequency transformation and passage to EC@. (I. 4) 

the group operator assumes the form 

The condition of commutation is 
[D, Y] = 0 or (D, Xl = 69 / 6% 

which in terms of coordinates yields the determining equations 

D$k = iXkgk + iz,, XXI, + eXfh. + iz, $$ + 

whose solution is sought in the form of series 
-$k = $ko + +$I -t &‘+@kz -t . . . 

(1.8) 

( 1.9) 
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We represent operators and functions fk in the form 

71 

D, = &kPzk + fkd & + (-- iakPZk + fkd $1 
k 

Substituting these expressions into E’qs. (1.6) and (1.9) and equating to zero the totality 
of terms with like powers of E ) we obtain equations 

which are subsequently used for successive determination of functions gkr. 

Equations (1.11) and (1.12) are successively integrated with the initial conditions 
qlkS (z, E, 0) = 0 (initial conditions may also be selected so as to obtain simpler 

expressions for functions $ks ). Functions akV are selected so that functions $k# 

are free of secular terms. After determination of functions ?/?k the final transformat- 

ions of the group are determined by the Lie series 

zk’ = zk + 27)k + 2! %a y~k+~ya~k+ . . . 

in which it is necessary to set z = - a. 

The general solution of system (1.2) is derived by formulas 

zk = % Izk=zko exp (iQkt) 

where zk” represent theinitial conditions for zk , Frequencies St* are obtained 
by inverting formulas (1.5). 

The group origin of f& makes possible the proof of reversibility of formulas (1.5) 

with respect to input frequencies ok. 
Let the input system be of second order and the frequency transformation function 

Cak depend only on o and E. Tra~formation of frequencies is determined by the 
Lie series by formula 

rs 
( 

a&O %o -- O’=O+ZfyJ@,e)+T Cm &) + & > +... (I. 131 

and the input frequency is determined by its inversion 
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(1.14) 

Frequency 51 of the linear system into which the input system is transformed is deter- 
mined by formula (1.13) with 1: = - E, and frequency w by formula ( 1.14) with E’ 
= O,o’ = Q, and z = -E. 

Since 

function 5, and all its derivatives can be determined at point (f&O) 

a& ae;, 
-~2!~-~50do’, . . . de’ 

After this the series for function 5, (co, E) and all its derivatives, and consequently 
also the series for Q , are derived. 

The question of convergence of the obtained expansions is not considered here, It 
is , however, useful to note that the use of Algorithm 4 for obtaining these series that 

represent the solution of Eqs. (1.2) are convergent whenever series xk for frequencies 

are convergent. This follows directly from the analyticity of the right-hand sides of 

Eqs, (1.4) and of initial conditions for gk. 
A 1 g o r i t h m 2. Let the natural frequencies ok in system (1.2) be related by 

1 resonance ~lati~~~, which implies the existence of h = n - 1 basic frequen- 

cies 01, . . ., wh 

wms -= YOlWl + * * *-tYohWh, (5 = 1, . . *, 1 

where ydj are rational numbers. These relationships can be satisfied either exactly 

or approximately (to some power of a). 
Natural frequencies can also resonate with the perturbing frequency 1. 
As in Algorithm 1 , we introduce the series 

C? 

The relationships 
h 

are then exactly satisfied. 
If any of the frequencies, for instance ~1, resonates with unity, we set 521 = p 

/q, where p and q are integers that correspond to the resonance. When functions 
ati& depend on z, Z, and t, we stipulate the fulfilment of conditions (1. 61, i, e. 
that L& = 0. 

We consider here one-parameter groups of system (1.4) that transform it into itself 

retain parameter E (a = a) , and shift the trivial solution z = 0. 

The operators of such groups are of the form 
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The commutative relation [D, Yl = 0 yields the determining equations 

&)k = ixk$k + izkyxk f eyfk 

that are linear and homogeneous with respect to ‘I/)j. Hence it is possible to introd- 

uce the new unknown functions 9j = gje*t (A is a real quantity and Y = e*‘X) 
in such a way that the exponent e *t does not appear in the new equations, i. e. 

D!,k = (ixk - A) Ek + izkxxk + efk 
(1.15) 

A = pie + paea + . . . 

The quantities PI, pa, . . . may depend on z, z’, and t (although frequently they 

are simply real numbers). In such case the condition 

DA = 0 (1. 16) 

is assumed satisfied. In addition, we stipulate that 

Xh = 0 (1.17) 

Otherwise the restitution of solution of Eq. (1.2) using operator Y, even when it 
does not contain secular terms, results in the unavoidable appearance of such terms. 

We seek the solution of Eq. (1.15) in the form of series 

gk = tkO -t a&f + e”Ekz + . . . 

Using expansions (1.10) and equating in Eqs. (1.6) and (1.15) - (1.17) the terms with 
like powers of e, we obtain the sequence of equations 

Do&s = iS2kEks i- 
,,L [( 

iakp - i&L) gkv + Q&v1 + (1.18) 

2 
P+Y=el 

X,/l, + izk p+Gzs xpuky 

D,$,ks = - 3 D,Uk,, S = 0, 1, 2, . . . 
c/+zI =8-l 

For the sought functions with index s these equations are readily integrable when fun- 
ctions with indices j < s are already known. The quantities o&p and BP , and the 

initial values of functions !& are selected on the basis of the condition of elimina- 

tion in equations of terms that generate secular terms (resonate terms). The solutions 

of equations for &a are selected in the form &a = Ck exp i&t (C are complex 
constants), Such functions &O ensure the shift of the trivial solution of Eqs. (1. 2)). 

If n independent solutions of system (1.18) can be found, the sought transitive 

solution of system (1.15) is obtained in the form of a linear combination of these sol- 

utions (with constant coefficients) by virtue of its linearity. 

Let $1, . . ., $,, be such solution, i.e. 

*j = kil lk$jk 

Functions $j define a real transformation group (local) of dimension 2n whose final 
transfornn tions are determined by the Lie series 
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Zi = Zj + T$j + 2f ” y$j+,$Y2$j+... ( 1.19) 

and 9j, y$j7 and Y”$j are, respectively, linear, quadratic, and cubic homogen- 
eous forms of constants Zr, . . . , 1,. Hence the right-hand sides of equalities (1,ls) 
are functions of constants .&* E ~1~ and zk’ = @)k (2, 2, f, E, I*). 

The sought solution of Eqs. (1.2) in the trivial solution neighborhood is obtained 
using formulas 

z&. = Q* (0, 0, t, F, 6*) ( 1.20) 

The solutions obtained using the described algorithms are asymptotic in the following 
sense. Let zk be the exact and 

zktm) = zko + &zkr + (sez& + . . . +Zk,y,&* 

the approximate solutions defined by segments of obtained series, Setting zk - 

Zk(m-i) = f??%k, wk - 1, we obtain for the remainders zk - Zkf*) differential eq- 
uations whose right-hand sides are of the (m+l) -st order of smallness, It can be 

shown using the theorems of existence and uniqueness that functions / zk (t) - zkcm) 
(t) 1 remain quantities of order E over times of order E”. The same theorem 
makes it possible to determine also all necessary constants in estimates, including~at 
for initial conditions. Note that the derivation of estimates represents a separate prob- 
lem. 

2. Bounded undamped oscillations, LetusapplyAlgorithm 
1 to Duffing, and Mathieu equations, to equations of motion of an elastic pendulum 

and equations of plane oscillations of a satellite on an elliptic orbit. 
The Duffing equation isoftheform 

2” -i_ 0% = WX3 + h sin t 

Using the complex variable z = x + iy, y = - z' / o, we obtain 

L z’~i~z-ie&-(z+2)3+~(e i*-e-if) ( 2.1) 

which has a unique solution (see [6]) whose complex form is 
&--it i?2 

[ 

i&S 

c 

,-sit ,3If 

w= 2CO(l+o) + 
(2,2) 

2w (1 -w) + u 8cO(l--~a)s 
-+_ - 
3+0 3-W ) 

3ich3 
80 (1 - oy i 

@t 1 
--+e-i+)] j-... 
1 

Let US find the first approbation so&&ion of IQ. (2.1) in the neighborhood of the 
periodic solution (2.1). Setting z = W + n 

0 = $2 + ECCl + . . . f x f’A3) 

we reduce the equation of motion to the form 

U’ = iszu + Efl + . . . (2.4) 

fl = _ _.!!i[(u + tz)3 + lE'Qa (eiL - d)(u + iz)" - 

39 
(1 - 522)s 

(@ - e-if)a (u + ii) 
3 

It is now sufficient to use only the first equations of system ( 1.11) 
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Dd*o = isz\g, + iam + fi(u, ii, t), D&Q = 0 (2.5) 

To integrate this, as well as remaining equations of system (1. 11) it is convenient to 
pass to new variables y = ue-*ot and 9 = iie*“f which are integrals of the equat- 
ion Day = 0. This reduces Eq. (2.5) to the readily integrable form 

* - ifz~o + ialyeff $- fl (ye”, ye-ft, t), 8% 
at = 0 (2. 6) 

To avoid the appearance in the expression for $a of secular terms, it is necess- 
ary to have al of the form 

Inverting formula (2.3), for the new frequency we obtain the expression 

“=0’a$$((*2hs@)s j -uzi +.*. 

and owing to condition Dx = 0 we have z& = u,iio -J- 0 (E), where u,, = u‘(O) 
is the input value of u. ~tegrating Eq. (2,5) and reverting to variable U, we obt- 
ain the transformation formula u’ = u f ~9~ i- . . . whose right-hand side is the 
general solution of Eq. (2.4) when we set in it u = UOeiblt (which is equivalent to 
the condition y = ~a). We thus obtain the sought general solution 

u=uoesct +e& 
I 

;; &#Jt _I 3%&02 e_fQf f ;y e- 3is-s 1 -I- 

3hu,2 . Gh L’& 
(1 -w (I+ Q) 

e-t (@+I) t + (1 _ nz) (1 _ stt e* W-1) t + 

33&)s 3hQ 
(1_-2J(l_3~)eft1-Zn)t+(~_-2)(~+3~) e-f(zsaj-l)f + 

Ghu,,ii, 3ih%, 
(1 -!a~)(1 -62) dt + (1 _ t2E:+ at e-it + 

2(1 - Q2)z 
ei (Ci+2) t _ 

3ih2uo 
2(1 - 522)s 

e* GW f + 3i?A& 
2($ _@)a($ -Q) e-i@-21t - 

Yihi& 
2(1 

_ Qa12 (t + BI e-i(o+2) t - 2~~~nale e-iat] + , . . 

The boundedness of motions (in the first appro~mation) defined by this formula is 
consistent with the stability of periodic motion (2.2) (see [63 ). 

T h e e 1 a s t i c p e n d u 1 u m. The equations of motion of such pendulum 
can be taken in the form f6] 

41” = 
-~91+~(-91*2 - -&12+ w22) + O(q2) 

qa” = -92+$(+” 912 + q12q2) + 0 (q2) 

where m and c are the mass and stiffness of the pendulum, g is the acceleration of 
gravity, I, and k are the lengths of the spring in its free state and in the pendul- 
um equilibrium position, respectively, and Q~ and qz are generalized coordinates 
(linear combinations of Cartesian coordinates). ~ffer~tiation is carried out with res- 
pect to parameter ‘G = (c/m)% 

We setzl, = xk + igk, 51 = 41, yl = ---Xl I co, x2 = q2,and ys = -x2’ 
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and write down the equations of motion in the complex form 

2-t’ = iWZ~ + z 
. E 

-+@I + &)(Z%-b- q-l- g WZli- h)(~2-t%)2+ 

(21 + %)3N 

The small parameter is invoiced by the ~bsti~tio~ z --f ZZ. The problem is 
to determtne the motion of penduium in the neighborhood of its equilibrium position 
in the second approximation, We use Algorithm P. Omitting details we adduce the 
final result 

where zkOo are arbitrary constants, The formulas show the predominant resonance 
to be 201 = 1. 

T h e M a t h i e u e q u a t i o n. If in the Mathieu equation 

;c** + 0s (1 - h cos t) z = 0 

we set oh = 46 and y =3 - 2’ / w and introduce the complex variable z = 5 
+ iy, it assumes the form (2.7) 

2’ 1LT= i0 2 + ic (2 + Z) (e” + Fit) (2,71 

Let us determine the nonresonance solution in the second approximation of this equat- 
ion. Using Algorithm 1 we obtain 

_.&Z._ e-5 @+I) t ) [ + e2 
Qzoei w+w t ~;~~-i @+a) t 

8 252+1 - (Q + If (2Q f 1) -I- 
Qzoei m-2, t Qz, e-i (Q-2) t 2z,t+ 

2Q-t1. + (2Q--1)(9-1) + 4@--1. 1 
With an accuracy up to e3 
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The satellite on an elliptic orbit. The equation of plane 

oscillations of a satellite relative to its center of mass with the latter moving on an 
elliptical orbit is of the form 

(1 +ecos4 -g&2e -$-sinvf psinacosa = 2esinv (2.3) 

where a is the angle of pitch, v is the true anomaly, e is the orbit eccentricity, 
and p = 3 (A - C) / B is the ratio of principal moments of inertiaof the satell- 
ite. 

By setting x = 2a we can write the equation of motion in the form of a second 

order system, The complex form of such system (after expanding sin x in series) 

2’ = - ip,‘lra-‘l2Z _ _i!$ (2 - 
%,-=A 

q+i p* (2 + q3 + (2.9) 

-&2+... (a=I+ecosv) 

According to [5] there exists a 2n -periodic solution of Eq. (2.8) whose generating 

solution is CC = 0 l 

We shall investigate the neighborhood of that periodic solution away from the pre- 

dominant resonance 2w = 1, on the assumption of smallness of eccentricity e. 

Using Algori~m 1 we obtain 

u3(+__+)&2-i)u+ s(2~;l) e-itn+l)u+8(~~2P)e-i(n-l)D- 

&_ eSiQu + u&()s 
96 

32 e-im + .f&e--1 + . *. 

for (2 =JGL=s u). 
With an accuracy up to E;” 

where uO is an arbitrary constant. 
Thus the complete neighborhood of the investigated periodic motion in the calcul- 

ated appro~mation is filled with alrn~t-~~~ic motions which is in accordance with 
the fact of stability of periodic motion (‘9. 

3. Oscillations accompanied by exponential bui- 
ldup or damping [of oscillations]. The Van der 
P o h 1 e q u a t i o n s. Using Algorithm 2 we derive the general solution of the 
Van der Pohl equation 

2” + z = 8 (1 - 3) i 

in the neighborhood of equilibrium state X = 5’ = 0. Passing to the complex 

*) Sarychev, V. A. and Zlatoustov, V. A. Periodic oscillations of a satellite in the 
plane of an elliptic orbit. Preprint, Inst. Applied Mathematics, Akad, Nauk SSSR, 
No.@, Moscow, 1975. 
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variable z =x+iy,y=- 
the form 

z* and setting 2 = gf$, we reduce the iequation to 

ug = iu -+ ef1 + E3ffg 
(3+1) 

fl = l/2 (u - ii), f3 = V8 (ti3 + ii224 - ilu2 - US) 

(since calculations show that a3 and pa are constants, and their derivatives in Eqs. 
(3.2) are at once rejected). Integrating the first of Eqs, (3.2) we obtain $0 = CeiQf 
(necessarily EO Lo ?c= 0). Re sonance terms are eliminated in the right-hand&de 
of the second of Eqs. (3,2) by an appropriate selection of ~61 and #J1 S We obtain 

DO& zzz && - ?$&-*Qt, C = const (acl = 0, B1 = “&3 

Integration of that equation yields 

where 8’1 is an arbitrary function of its arguments. 
We reduce the third of Eqs. (3,2) to the form 

in which we eliminate resonance terms by the following selection of C$ and & : 

a2 = v&i, 82 = 0 

We can set FI = 0 which yields DOE% = ia& and, consequently, 

Es = PV, (y? ;r;> 

Fun&ions Fat Q, and pS are selected so that the resonance terms in the last of 

Eqs. f3.2) are eliminated 

Integration of the last of Eqss. (3.2) yields 

,,T;_&(&+$~~+$p ,-iQt-t_&%r@~+ 
1 
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Eunction Fs whose selection is dictated by the condition of elimination of reson- 
ance terms in the equation for & (not adduced here) can be of the form 

Fs = A3y2 + B3yT, A3 = $$, B3 = g 
From the same condition we additionally have 

a4 = 1 
-128p’ #xl = 0 

Transformation of the group is carried out by formula (1.19) 

According to Algorithm 2 the general solution of Eq. (3,l) is calculated by form- 
ula 

We thus finally obtain 

ZJ = cf, (0, 0, a, t, t,, ?.a) 

a3 
6 

i 64-P 
- &i-W t + -at + 9~1& - &t $ 

89 

3il,s esiPt 3iQ 
m + xiTe- 

where EO is an arbitrary constant. 
With an accuracy to a* we have A = 1/2 E. Inverting the formula for frequen- 

CY 
1=st+&_ a4 +..* 128P 

we obtain 
Ll-$es-&ah+... 

The Mathieu equation. Analysis of the neighborhood of the 4n - 
periodic resonance solution of the Mathieu equation (2.7) yields the general solution 

21 = eLt (3D” (zO = eie, al = _ie-2@), zs fl: ehtt Q* (zO = e”ia, 

al = --ie2**) I 
Q* = ~,.$ltt + 8 (Zoea/df _ z,e-‘/dt _ 1/2&e-al2it) + 

e2 [ _ l/&e-‘l& - (V2a1Zo + iz,)e*~~it + 1/2iZoe+f~it - 

2i~,,e”JtQ + l/2iz,e’/dt] 

where b and 1s are arbitrary constants and 0 is a parameter. 
The natural frequency and the index are determined (with accuracy to e3) by 

formulas 

0 = i/2 - E cos 28 + 1f2 e2, Al = e sin 28, A, = - 8 sin 2 e 
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For each fixed w we obtain completely determined value of 8, indices AI 
and A, that correspond to that value, and the solution z. 

T h e D u f f i n g e q u a t i o n. When the natural frequency of oscillation is 

close to that of perturbations o z 1, the Duffing equation assumes the form (see [6] ) 

5” + 5' = &ax -1 8CX3 + chl sin t 

In the complex form 

. z =iz-i y (2 + Z) _ i 7 (2 + 2)” $ _!$_ (e-if _ eit) (3.3) 

The 2n -periodic solutions of this equation are determined by formula (see [6] 1 

w==w~+Ew~~~~~w~-/-..., wo==-ipeif 
(3.4) 

The amplitude p is determined by the set of positive solutions of equations 

ap + 3/, cp3 +- h’ = 0 (a’ > 0) (3. 5) 

There can be one or three of such solutions. The case of multiple roots of I@, (3,4) 

is not considered here. Using Algorithm 2 we obtain the general solution of IQ. (3.3) 

in the neighborhood of periodic motions. The substitution z = w -j- EU reduces this 

equation with allowance for expansion (3.4)) to the form 

ZL’ = iu + Efl -+ &2fi + * . . 

fl=(U+G)[y- (e2it + e-zit) _ + (a + -i?!$C)] 

fa = i (24 + &) [ - 2 Nl Jr J$?- (N, - g) pi’ + emzi’) + 

_g fe4if + e-4y] “;;” @ + a)2 (,-it _ &t) 1 

The deterring equation for E, is D&a = i& (see (1.18)). We assume its 

solution to be of the form ‘$,, = Ceif (C = const). 

Fur&ion 51 is obtained by integrating the equation 

DO& = i& - DIEa + al& + X$1 (ak = ia& - Bk) 

After substitution of specifid expressions for E, and f~ we have 

D& = &+ alCei' i- C- 
3ya (e3it + ,-it) _ C + (a + ?$) eit + 

c v (,it + ,-39 _ C + (a + _?!$t) e-if 

Ewating to Zero the totality of rmmance terms in the right-hand side, we obtain 

alC _ C+ ~a+_?$t)-~i2 = 0 (C = reie) 

from which 
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Since o = 1 + are + . . ., hence at exact resonance (o = 1) 

Further we have 

It can be readily 

UiS-i_ a +qL qpos20=0 (3, 61 

fls = ysin28 (3.71 

verified by comparing conditions (3.6) and (3.5) that it is possible 
to satisfy the equation by a real value of parameter 8 only when the amplitude equat- 
ions (3.5) have all their three roots pr < ps < p3 real and p = Pa. 

Thus in this case we have to deal with the neighborhood of periodic solution that 
corresponds to the middle root p = ps. 

Evidently the two values of /3i 

and, consequently, the two values of the index 

correspond to cos 2 8 determined by formula (3.6). 
Taking into consideration that subsequently the exponents with these indices appear 

in the solution of Eq, (3.3), we can see that the related periodic solution is unstable. 
This agxees with the statements in [6]. 

Further 

e+“Fr (y, 7) 

We select a2, p2 , and function Fr so that the resonance terms in the equation 

for k, 

are eliminated 
After necessary transformations we obtain 

r=p, F,=Ay+By, A-i:=, B = _ Z!!& ei6 

These formulas show that E, hu a singularity at COS 6 = 0 to which, as can be read- 
ily see, corresponds the case of multiple roots of the amplitude equation (3.8, which 
was eliminated from our investigation, The following two solutions of determining eqb 
uations: 
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El- c-_ 3w3 &* f?3it ,@ e-3it 
8 ( 2 

+ 1 f (,ie 3z3 e-ie 3cSp” f 

,ie pa 2 ) e-*’ + A-u + B-iieaif, A- = A, B- sin 6 = ----_fj-1 .a 
co@ e 

correspond to 8 and --8 that satisfy condition (3.6). 
Reverting now to functions Q = &At we obtain a two-parameter group which 

is determined by the set of operators Y = Q 8,/h. j- jj d/au where in the 
first approximation 

Z1 and 1, are arbitrary constants. The first approximation of the sought general 
solution is determined by formula 

where 1,” = tl, and E,* = zl, are arbitrary constants. 

Let us now turn to the neighborhood of other periodic solutions of the Duffing eq- 
uation , The nonresonance Duffing equation (2. 1) is converted into the resonance 
equation (3.31 by the ~bsti~tion o 2 - 1 = ae and h’ = &A,. Obviously the relat- 
ed periodic solutions of Eqs. (2.1) and (3.3) convert into one another , Simple 
reasoning and calculations show that the transformation is achieved for solutions with 
P =;Pl and p =ps. 

The corresponding neighborhoods of these solutions transform into one another, 

which makes possible their determination using the indicated substitution, 

The author thanks V. M. Alekseev for important critical remarks. 
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